Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar.

Identifieur interne : 001C12 ( Main/Exploration ); précédent : 001C11; suivant : 001C13

Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar.

Auteurs : Jiali He [République populaire de Chine] ; Hong Li ; Chaofeng Ma ; Yanli Zhang ; Andrea Polle ; Heinz Rennenberg ; Xingqi Cheng ; Zhi-Bin Luo

Source :

RBID : pubmed:25229726

Descripteurs français

English descriptors

Abstract

Overexpression of bacterial γ-glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd(2+) influx in association with H(+) /Ca(2+) , Cd tolerance, and the underlying molecular and physiological mechanisms are uncharacterized in these poplars. We assessed net Cd(2+) influx, Cd tolerance and the transcriptional regulation of several genes involved in Cd(2+) transport and detoxification in wild-type and transgenic poplars. Poplars exhibited highest net Cd(2+) influxes into roots at pH 5.5 and 0.1 mM Ca(2+) . Transgenics had higher Cd(2+) uptake rates and elevated transcript levels of several genes involved in Cd(2+) transport and detoxification compared with wild-type poplars. Transgenics exhibited greater Cd accumulation in the aerial parts than wild-type plants in response to Cd(2+) exposure. Moreover, transgenic poplars had lower concentrations of O2 ˙(-) and H2 O2 ; higher concentrations of total thiols, GSH and oxidized GSH in roots and/or leaves; and stimulated foliar GSH reductase activity compared with wild-type plants. These results indicate that transgenics are more tolerant of 100 μM Cd(2+) than wild-type plants, probably due to the GSH-mediated induction of the transcription of genes involved in Cd(2+) transport and detoxification.

DOI: 10.1111/nph.13013
PubMed: 25229726


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar.</title>
<author>
<name sortKey="He, Jiali" sort="He, Jiali" uniqKey="He J" first="Jiali" last="He">Jiali He</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866</wicri:regionArea>
<wicri:noRegion>110866</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Hong" sort="Li, Hong" uniqKey="Li H" first="Hong" last="Li">Hong Li</name>
</author>
<author>
<name sortKey="Ma, Chaofeng" sort="Ma, Chaofeng" uniqKey="Ma C" first="Chaofeng" last="Ma">Chaofeng Ma</name>
</author>
<author>
<name sortKey="Zhang, Yanli" sort="Zhang, Yanli" uniqKey="Zhang Y" first="Yanli" last="Zhang">Yanli Zhang</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Cheng, Xingqi" sort="Cheng, Xingqi" uniqKey="Cheng X" first="Xingqi" last="Cheng">Xingqi Cheng</name>
</author>
<author>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25229726</idno>
<idno type="pmid">25229726</idno>
<idno type="doi">10.1111/nph.13013</idno>
<idno type="wicri:Area/Main/Corpus">001F99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F99</idno>
<idno type="wicri:Area/Main/Curation">001F99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F99</idno>
<idno type="wicri:Area/Main/Exploration">001F99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar.</title>
<author>
<name sortKey="He, Jiali" sort="He, Jiali" uniqKey="He J" first="Jiali" last="He">Jiali He</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866</wicri:regionArea>
<wicri:noRegion>110866</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Hong" sort="Li, Hong" uniqKey="Li H" first="Hong" last="Li">Hong Li</name>
</author>
<author>
<name sortKey="Ma, Chaofeng" sort="Ma, Chaofeng" uniqKey="Ma C" first="Chaofeng" last="Ma">Chaofeng Ma</name>
</author>
<author>
<name sortKey="Zhang, Yanli" sort="Zhang, Yanli" uniqKey="Zhang Y" first="Yanli" last="Zhang">Yanli Zhang</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Cheng, Xingqi" sort="Cheng, Xingqi" uniqKey="Cheng X" first="Xingqi" last="Cheng">Xingqi Cheng</name>
</author>
<author>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Cadmium (metabolism)</term>
<term>Calcium (metabolism)</term>
<term>Carbohydrate Metabolism (genetics)</term>
<term>Dipeptides (metabolism)</term>
<term>Escherichia coli (enzymology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Hydrogen (metabolism)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Plant Bark (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
<term>Superoxides (metabolism)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Analyse en composantes principales (MeSH)</term>
<term>Antioxydants (métabolisme)</term>
<term>Bois (métabolisme)</term>
<term>Cadmium (métabolisme)</term>
<term>Calcium (métabolisme)</term>
<term>Dipeptides (métabolisme)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Hydrogène (métabolisme)</term>
<term>Inactivation métabolique (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Métabolisme glucidique (génétique)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Superoxydes (métabolisme)</term>
<term>Thiols (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Écorce (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Cadmium</term>
<term>Calcium</term>
<term>Dipeptides</term>
<term>Hydrogen</term>
<term>RNA, Messenger</term>
<term>Reactive Oxygen Species</term>
<term>Sulfhydryl Compounds</term>
<term>Superoxides</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Métabolisme glucidique</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Bark</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Antioxydants</term>
<term>Bois</term>
<term>Cadmium</term>
<term>Calcium</term>
<term>Dipeptides</term>
<term>Espèces réactives de l'oxygène</term>
<term>Feuilles de plante</term>
<term>Hydrogène</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Superoxydes</term>
<term>Thiols</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Inactivation, Metabolic</term>
<term>Models, Biological</term>
<term>Plants, Genetically Modified</term>
<term>Principal Component Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse en composantes principales</term>
<term>Gènes de plante</term>
<term>Inactivation métabolique</term>
<term>Modèles biologiques</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transport biologique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Overexpression of bacterial γ-glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd(2+) influx in association with H(+) /Ca(2+) , Cd tolerance, and the underlying molecular and physiological mechanisms are uncharacterized in these poplars. We assessed net Cd(2+) influx, Cd tolerance and the transcriptional regulation of several genes involved in Cd(2+) transport and detoxification in wild-type and transgenic poplars. Poplars exhibited highest net Cd(2+) influxes into roots at pH 5.5 and 0.1 mM Ca(2+) . Transgenics had higher Cd(2+) uptake rates and elevated transcript levels of several genes involved in Cd(2+) transport and detoxification compared with wild-type poplars. Transgenics exhibited greater Cd accumulation in the aerial parts than wild-type plants in response to Cd(2+) exposure. Moreover, transgenic poplars had lower concentrations of O2 ˙(-) and H2 O2 ; higher concentrations of total thiols, GSH and oxidized GSH in roots and/or leaves; and stimulated foliar GSH reductase activity compared with wild-type plants. These results indicate that transgenics are more tolerant of 100 μM Cd(2+) than wild-type plants, probably due to the GSH-mediated induction of the transcription of genes involved in Cd(2+) transport and detoxification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25229726</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>205</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>240-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.13013</ELocationID>
<Abstract>
<AbstractText>Overexpression of bacterial γ-glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd(2+) influx in association with H(+) /Ca(2+) , Cd tolerance, and the underlying molecular and physiological mechanisms are uncharacterized in these poplars. We assessed net Cd(2+) influx, Cd tolerance and the transcriptional regulation of several genes involved in Cd(2+) transport and detoxification in wild-type and transgenic poplars. Poplars exhibited highest net Cd(2+) influxes into roots at pH 5.5 and 0.1 mM Ca(2+) . Transgenics had higher Cd(2+) uptake rates and elevated transcript levels of several genes involved in Cd(2+) transport and detoxification compared with wild-type poplars. Transgenics exhibited greater Cd accumulation in the aerial parts than wild-type plants in response to Cd(2+) exposure. Moreover, transgenic poplars had lower concentrations of O2 ˙(-) and H2 O2 ; higher concentrations of total thiols, GSH and oxidized GSH in roots and/or leaves; and stimulated foliar GSH reductase activity compared with wild-type plants. These results indicate that transgenics are more tolerant of 100 μM Cd(2+) than wild-type plants, probably due to the GSH-mediated induction of the transcription of genes involved in Cd(2+) transport and detoxification.</AbstractText>
<CopyrightInformation>© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Jiali</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Chaofeng</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yanli</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rennenberg</LastName>
<ForeName>Heinz</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Xingqi</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Zhi-Bin</ForeName>
<Initials>ZB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004151">Dipeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11062-77-4</RegistryNumber>
<NameOfSubstance UI="D013481">Superoxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>M984VJS48P</RegistryNumber>
<NameOfSubstance UI="C017341">gamma-glutamylcysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004151" MajorTopicYN="N">Dipeptides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="N">Hydrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="N">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013481" MajorTopicYN="N">Superoxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">antioxidant</Keyword>
<Keyword MajorTopicYN="N">cadmium (Cd)</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">ion flux</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">phytoremediation</Keyword>
<Keyword MajorTopicYN="N">plasma membrane H+-ATPase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25229726</ArticleId>
<ArticleId IdType="doi">10.1111/nph.13013</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cheng, Xingqi" sort="Cheng, Xingqi" uniqKey="Cheng X" first="Xingqi" last="Cheng">Xingqi Cheng</name>
<name sortKey="Li, Hong" sort="Li, Hong" uniqKey="Li H" first="Hong" last="Li">Hong Li</name>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
<name sortKey="Ma, Chaofeng" sort="Ma, Chaofeng" uniqKey="Ma C" first="Chaofeng" last="Ma">Chaofeng Ma</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
<name sortKey="Zhang, Yanli" sort="Zhang, Yanli" uniqKey="Zhang Y" first="Yanli" last="Zhang">Yanli Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="He, Jiali" sort="He, Jiali" uniqKey="He J" first="Jiali" last="He">Jiali He</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25229726
   |texte=   Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25229726" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020